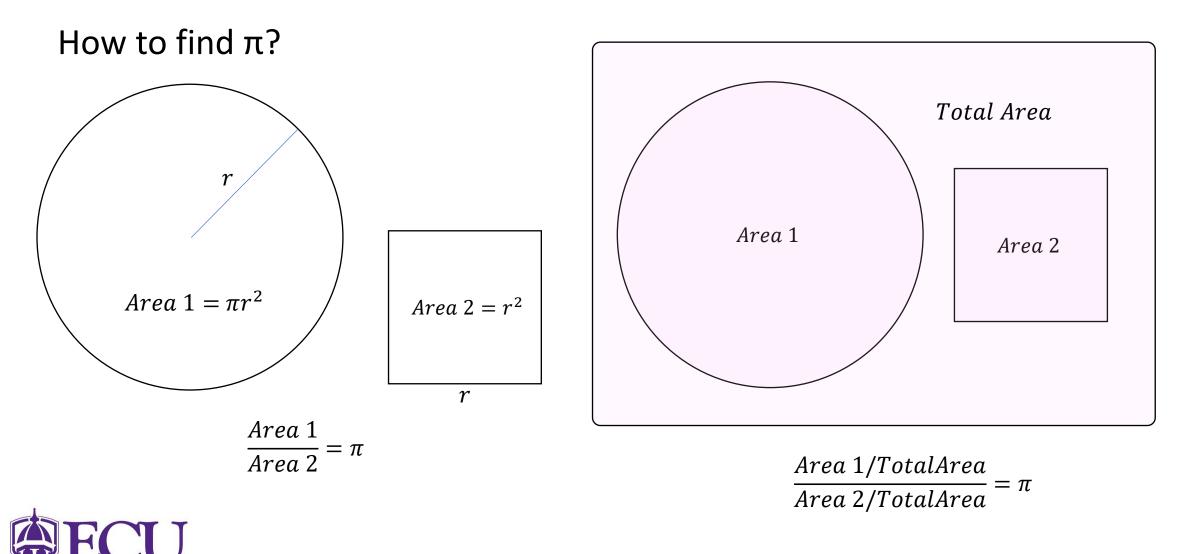
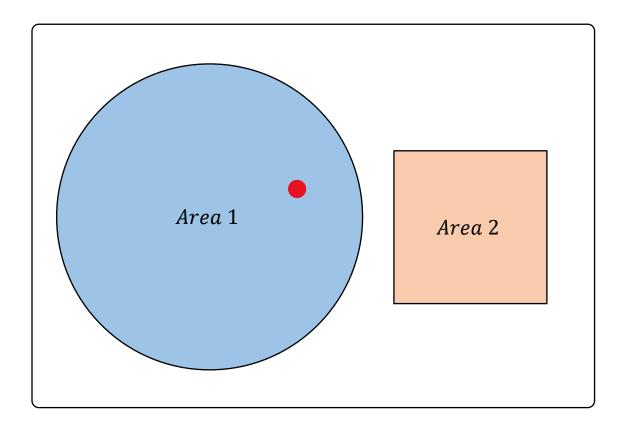
NCAIR 2024 Annual Conference Institutional Innovation

Enrollment Projection with Monte Carlo Simulation

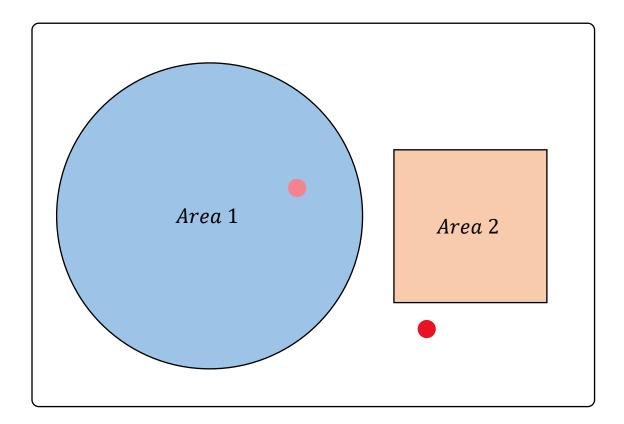
Franklin Zhou IPAR, East Carolina University

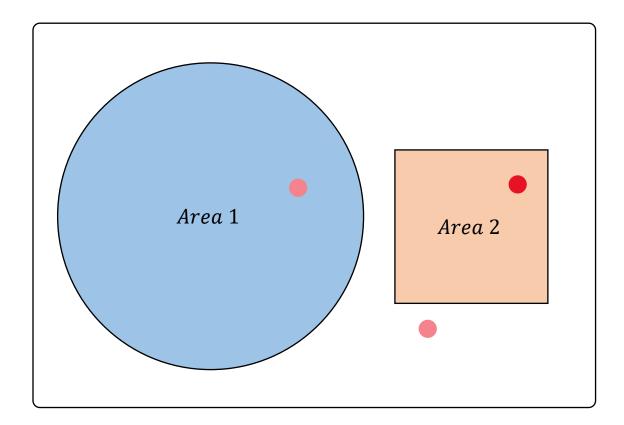
What is a Monte Carlo Simulation?

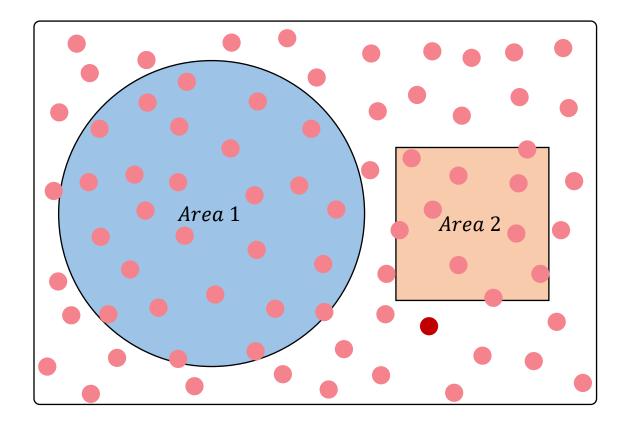

Monte Carlo: a casino in Monaco



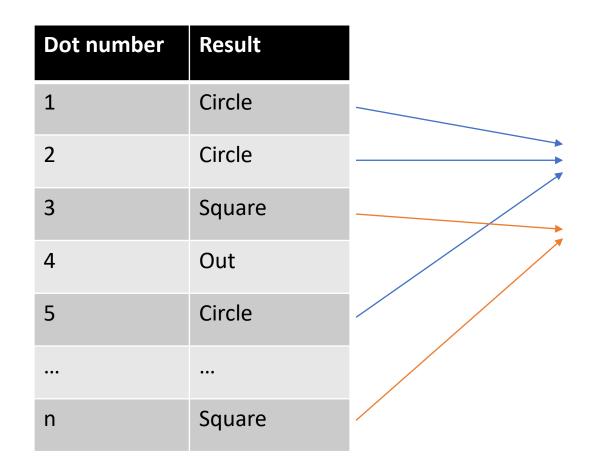
"Monte Carlo Simulation, also known as the Monte Carlo Method or a multiple probability simulation, is a mathematical technique, which is used to estimate the possible outcomes of an uncertain event."


https://www.ibm.com/topics/monte-carlo-simulation


For each single dot, the probability of falling within the circle is $\frac{Area\ 1}{Total_Area}$, the probability of falling within the square is $\frac{Area\ 2}{Total_Area}$


For each single dot, the probability of falling within the circle is $\frac{Area\ 1}{Total_Area}$, the probability of falling within the square is $\frac{Area\ 2}{Total_Area}$

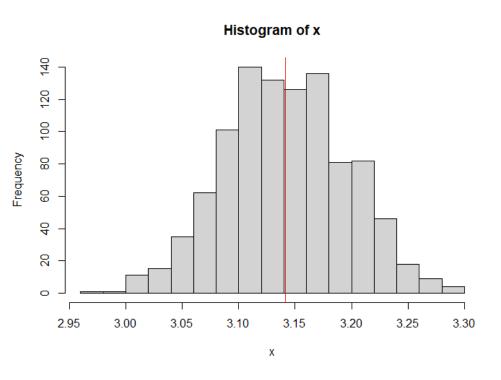
For each single dot, the probability of falling within the circle is $\frac{Area\ 1}{Total_Area}$, the probability of falling within the square is $\frac{Area\ 2}{Total_Area}$


For each single dot, the probability of falling within the circle is $\frac{Area\ 1}{Total_Area}$, the probability of falling within the square is $\frac{Area\ 2}{Total_Area}$

Since $\frac{Area \ 1/Total_Area}{Area \ 2/Total_Area} = \pi$

In the long run,

 $\frac{\# of \ dots \ within \ the \ circle}{\# of \ dots \ within \ the \ square} = \pi$


When n is getting larger, according to Law of Large Numbers:

 $\frac{\# of \ dots \ within \ the \ circle}{\# of \ dots \ within \ the \ square} \approx \pi$

 $P_{1}(Circle) = P_{2}(Circle) = \dots = P_{n}(Circle)$ $P_{1}(Square) = P_{2}(Square) = \dots = P_{n}(Square)$ $P_{1}(Out) = P_{2}(Out) = \dots = P_{n}(Out)$

Dot number	Simulation 1 result	Simulation 2 result	 Simulation n result
001	Circle	Circle	 Square
002	Circle	Square	 Out
003	Square	Out	 Circle
004	Out	Circle	 Circle
005	Circle	Circle	 Square
		•••	
500	Circle	Out	 Circle
	π_1	π_2	 \downarrow π_n



Simulation of 1000 times

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.976 3.104 3.144 3.144 3.180 3.284

Similarly...

Student ID	Simulation 1 result	Simulation 2 result	••••	Simulation n result
001	Retained	Retained		Not Retained
002	Not Retained	Retained		Retained
003	Retained	Retained		Retained
004	Retained	Not Retained		Retained
005	Retained	Retained		Not Retained
500	Not Retained	Retained		Retained
				\downarrow
	# Retained	# Retained		# Retained

Simulation of 1000 times

Min. 1st Qu. Median Mean 3rd Qu. Max. 3913 3982 4002 4001 4021 4094

Data set

- Dependent Variable • Retained in Fall (Y/N)
- Independent Variables
 - $\circ \ {\rm Age}$
 - $\circ \,\, \text{Gender}$
 - o Race/Ethnicity
 - Full Time/Part Time
 - Cumulative GPA
 - 0 ...

Step 1: Use predictive model to get the predicted retention probability for each student.

Student ID	Probability of Retention
0001	$P_{001}(Retention)$
0002	$P_{002}(Retention)$
0003	$P_{003}(Retention)$
0004	$P_{004}(Retention)$
0005	$P_{005}(Retention)$
5000	$P_{500}(Retention)$

	Col A	Col B	Col C
Row 1	Student ID	Probability of Retention	Simulation 1
Row 2	0001	0.389937	0
Row 3	0002	0.757576	1
Row 4	0003	0	0
Row 5	0004	0.111111	1
	0005	0.15	0
Row 5001	5000	0.142857	0

Step 2: Run simulation for all students.

=IF(\$B2>=RAND(),1,0) =IF(\$B3>=RAND(),1,0)

...

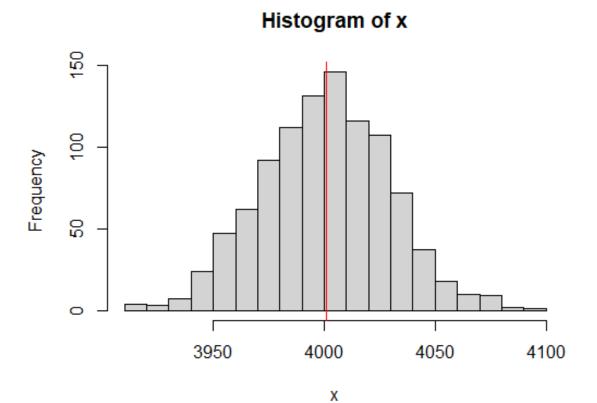
=IF(\$B501>=RAND(),1,0)

Step 3: Run as many simulations as you want

	Col A	Col B	Col C	Col D		Col AAA
Row 1	Student ID	Probability of Retention	Simulation 1	Simulation 2	•••	Simulation n
Row 2	0001	0.389937	0	1		0
Row 3	0002	0.757576	1	1		1
Row 4	0003	0	0	0		0
Row 5	0004	0.111111	1	0		0
	0005	0.15	0	0		1
Row 5001	5000	0.142857	0	1		0

Step 4: Calculate the sum for each simulation as expected total retention number

	Col A	Col B	Col C		Col D	•••	Col AAA
Row 1	Student ID	Probability of Retention	Simulation	1	Simulation 2	2	Simulation n
Row 2	0001	0.389937	0				
Row 3	0002	0.757576	1		1		1
Row 4	0003	0	0		0		0
Row 5	0004	0.111111	1		0		0
	0005	0.15	0		0		1
Row 5001	5000	0.142857	0				0
	-					01)	



=SUM(C2:C5001) =SUM(D2:D5001)

Step 5: Descriptive analysis of all expected retention numbers

Simulation of 1000 times

Min. 1st Qu. Median Mean 3rd Qu. Max. 3913 3982 4002 4001 4021 4094

• Step 1: Use predictive model to get the predicted retention probability for each student

Example: binary logistic regression

```
# build the logistic regression
Im_ug <- glm(RETAINED ~., data = UG_train, family = "binomial")</pre>
```

....
validation part omitted

This gives you the probability of Response = 1

predict the retention by applying the model on the new data
projection_24 <- predict(lm_ug, newdata = UG_23_DATA, type = "response")</pre>

• Step 2: Run Monte Carlo Simulation

set total number of simulations N=3000

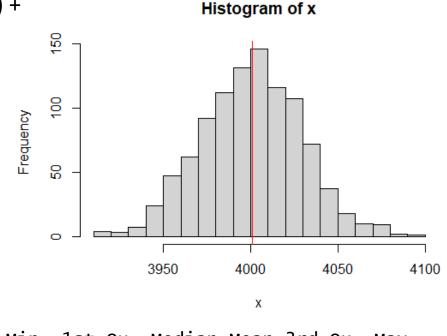
Store the predicted total numbers in the vector

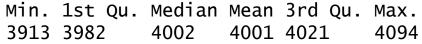
runif(): generate a random number in a uniform distribution

lapply(): apply a function
over a List or Vector

build up a vector
total_ug <- NULL</pre>

```
# create the function
pred_fun <- function(x){
    ifelse(x >= runif(1),1,0)
    }
```


run the simulation N times and store the sum into the vector
for (i in 1:N){
 df_pred <- lapply(projection_24,pred_fun)
 total_ug[i] = sum(unlist(df_pred))</pre>



• Step 3: Check the result and make plot

```
ggplot(data = as.data.frame(total_ug), mapping = aes(x = total_ug)) +
geom_histogram(bins = 50) +
labs(title = "Retention projection of 2024 undergraduates") +
xlab("Estimated Retention") +
theme_light()
```


```
summary(total_ug)
quantile(total_ug, c(0.025,0.975))
```


Performance Enhancement

By default, R runs only on a single thread on the CPU.

How to enhance the performance?

• Upgrade equipment

- Improve R code: vectorized functions
- Use parallel processing programming

Performance Enhancement – vectorized function

• Speed up Step 2: Monte Carlo Simulation (original code)

system.time()

user system elapsed 161.68 0.11 161.92

The problem: we evaluate this function too many times.

30,000 students X 3,000 simulations = 90,000,000 times!


```
# set total number of simulations
N=3000
```

build up a vector
total_ug <- NULL</pre>

```
# create the function
pred_fun <- function(x){
    ifelse(x >= runif(1),1,0)
    }
```

run the simulation N times and store the sum into the list
for (i in 1:N){
 df_pred <- lapply(projection_24,pred_fun)
 total_ug[i]= sum(unlist(df_pred))
 }</pre>

Performance Enhancement – vectorized function

• Speed up Step 2: Monte Carlo Simulation (improved code)

system.time()						
user system elapsed						
0.61	0.03	0.64				

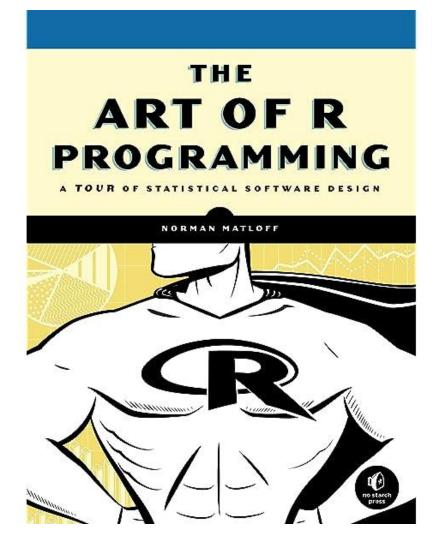
set total number of simulations

N=3000

build up a vector total ug <- NULL

The ">=" function and "runif()" function only be called ONCE in each iteration of the loop. It saves you lots of time!

run the simulation N times and store the sum into the list
for (i in 1:N){
 total_ug[i] <- sum(projection_24 >= runif(length(projection_24)))
}


R Programming Resources

Parallel and high performance computing with R

https://youtu.be/NWgOkKorFH4

Parallel Programming with R

https://youtu.be/O8PiX9ofXDI

Thank you for attending the 2024 NCAIR Annual Conference!

There's a QR code in your program for a conference evaluation form. You'll also get an e-mail following the conference with a link to the form, which will be available until 4/30.

At your earliest convenience, please take this opportunity to let the planning committee know your thoughts about this year's conference and where you would like to meet next year.